Ergodic Theory - Week 2

Course Instructor: Florian K. Richter Teaching assistant: Konstantinos Tsinas

1 Von Neumann's Mean Ergodic Theorem

- **P1.** Let (X, \mathcal{A}, μ, T) be a measure-preserving system.
 - (a) Let $A, B \in \mathcal{A}$. Show that if (X, \mathcal{A}, μ, T) is ergodic then $\mu(A) \sqrt{\mu(A)(1 \mu(B))} \leq \limsup_{n \to \infty} \mu(T^{-n}A \cap B) \text{ and } \liminf_{n \to \infty} \mu(T^{-n}A \cap B) \leq \sqrt{\mu(A)\mu(B)}.$
 - **(b)** Let $f \in L^2(X, \mathcal{A}, \mu)$. Show that the limit

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} \int T^n f \cdot \overline{f} d\mu$$

exists, is real, and is greater than or equal to $|\int f d\mu|^2$.

- **P2.** (a) Show that the circle rotation system $(\mathbb{T}, \mathbb{B}_{\mathbb{T}}, m, R_{\alpha})$ is ergodic if and only if $\alpha \in \mathbb{R} \setminus \mathbb{Q}$.
 - (b) Show that the circle doubling system $(\mathbb{T}, \mathbb{B}_{\mathbb{T}}, m, T_2)$, where $T_2(x) = 2x \mod 1$, is ergodic.
- **P3.** Let (X, \mathcal{A}, μ, T) be a measure-preserving system. We call (X, \mathcal{A}, μ, T) mixing if for all $A, B \in \mathcal{A}$, we have $\lim_{N\to\infty} \mu(T^{-N}A\cap B) = \mu(A)\mu(B)$. Show that (X, \mathcal{A}, μ, T) is mixing if and only if for all $A \in \mathcal{A}$ we have

$$\lim_{N \to \infty} \mu(T^{-N}A \cap A) = \mu(A)^2. \tag{1}$$

- **P4.** Let X be a compact metric space, and let $T: X \to X$ be continuous. Suppose that μ is a T-invariant ergodic probability measure defined on the Borel subsets of X. Prove the following:
 - (a) The support of the measure μ , defined as

$$\operatorname{supp}(\mu) = X \setminus \Big(\bigcup_{\substack{U \subseteq X \text{ open} \\ \mu(U) = 0}} U\Big),$$

has full measure.

(b) For μ -almost every $x \in X$ and for every $y \in \text{supp}(\mu)$, there exists a sequence $n_k \nearrow \infty$ such that $T^{n_k}x \to y$ as $k \to \infty$.

1